sexta-feira, 25 de setembro de 2009

Petróleo e Gás Natural Podem Não Ser Fósseis


Cientístas cogitam a hipótese de que o petróleo e o gás natural têm origem do carbono que encontra-se no centro da Terra. Inconformados com a afirmação, os dinossauros fazem movimentação pedindo seus direitos sobre a formação dessas fontes de energia, mas infelizmente não dá em nada, pois no mesmo momento foi lembrado que eles estavam todos mortos[pelo menos até onde se sabe], e tudo não passa de apenas uma alucinação deste escritor, que de alguma forma tem uma imaginação fértil como adubo.

Teorias famosas

O Universo originou-se de uma descomunal explosão, conhecida como Big Bang. O petróleo e o gás natural são combustíveis fósseis. Estas são provavelmente as duas teorias científicas mais disseminadas, de maior conhecimento do público e algumas das que alcançaram maior sucesso em toda a história da ciência.

Elas são tão populares que é fácil esquecer que são exatamente isto - teorias científicas, e não descrições de fatos testemunhados pela história. Mesmo porque as duas oferecem explicações para eventos que se sucederam muito antes do surgimento do homem na Terra.

Teoria dos combustíveis fósseis

Segundo a teoria dos combustíveis fósseis, que é a mais aceita atualmente sobre a origem do petróleo e do gás natural, organismos vivos morreram, foram enterrados, comprimidos e aquecidos sob pesadas camadas de sedimentos na crosta terrestre, onde sofreram transformações químicas até originar o petróleo e o gás natural.

É com base nesta teoria que chamamos as principais fontes de energia do mundo moderno de "combustíveis fósseis" - porque seriam resultado de restos modificados de seres vivos.

Teoria do petróleo abiótico

Muito menos disseminado é o fato de que esta não é a única teoria para explicar o surgimento do petróleo. Na verdade, esta teoria hegemônica vem sendo cada vez mais questionada por um grande número de cientistas, que defendem que o petróleo tem uma origem abiótica, ou abiogênica - sem relação com formas de vida.

Os defensores da teoria abiótica do petróleo têm inúmeros argumentos. Por exemplo, a inexistência de fenômenos geológicos que possam explicar o soterramento de grandes massas vivas, como florestas, que deveriam ser cobertas antes que tivessem tempo de se decompor totalmente ao ar livre, juntamente com a inconsistência das hipóteses de uma deposição do carbono livre na atmosfera no período jovem da Terra, quando suas temperaturas seriam muito altas.

A deposição lenta, como registrada por todos os fósseis, não parece se aplicar, uma vez que as camadas geológicas apresentam variações muito claras, o que permite sua datação com bastante precisão. Já os depósitos petrolíferos praticamente não apresentam alterações químicas variáveis com a profundidade, tendo virtualmente a mesma assinatura biológica em toda a sua extensão.

Além disso, os organismos vivos têm mais de 90% de água e mesmo que a totalidade de sua massa sólida fosse convertida em petróleo não haveria como explicar a quantidade de petróleo que já foi extraída até hoje.

Outros fenômenos geológicos, para explicar uma eventual deposição quase "instantânea," deveriam ocorrer de forma disseminada - para explicar a grande distribuição das reservas petrolíferas ao longo do planeta - e em grande intensidade - suficiente para explicar os gigantescos volumes de petróleo já localizados e extraídos.

Carbono do interior da Terra

Por essas e por outras razões, vários pesquisadores afirmam que nem petróleo, nem gás natural e nem mesmo o carvão, são combustíveis fósseis. Para isso, afirmam eles, o ciclo do carbono na Terra deveria ser um ciclo fechado, restrito à crosta superficial do planeta, sem nenhuma troca com o interior da Terra. E não há razões para se acreditar em tal hipótese.

Na verdade, aí está, segundo a teoria dos combustíveis abióticos, a origem do petróleo, do gás natural e do carvão: eles se originam do carbono que é "bombeado" continuamente pelas altíssimas pressões do interior da Terra em direção à superfície.

É possível sintetizar hidrocarbonetos a partir de matéria orgânica, e estes experimentos foram, por muitos anos, o principal sustentáculo da teoria dos combustíveis fósseis.

Mas agora, pela primeira vez, um grupo de cientistas conseguiu demonstrar experimentalmente a síntese do etano e de outros hidrocarbonetos pesados em condições não-biológicas. O experimento reproduz as condições de pressão e temperatura existentes no manto superior, a camada da Terra abaixo da crosta.

Metano e etano abióticos

A pesquisa foi feita por cientistas do Laboratório de Geofísica da Instituição Carnegie, nos Estados Unidos, em conjunto com colegas da Suécia e da Rússia, onde a teoria do petróleo abiótico surgiu e tem muito mais aceitação acadêmica do que em outras partes do mundo.

O metano (CH4) é o principal constituinte do gás natural, enquanto o etano (C2H6) é usado como matéria-prima petroquímica. Esses dois hidrocarbonetos, juntamente com outros associados aos combustíveis de origem geológica, são chamados de hidrocarbonetos saturados porque eles têm ligações únicas e simples, saturadas com hidrogênio.

Utilizando uma célula de pressão, conhecida como bigorna de diamante, e uma fonte de calor a laser, os cientistas começaram o experimento submetendo o metano a pressões mais de 20 mil vezes maiores do que a pressão atmosférica ao nível do mar, e a temperaturas variando de 700° C a mais de 1.200° C. Estas condições de temperatura e pressão reproduzem as condições ambientais encontradas no manto superior da Terra, entre 65 e 150 quilômetros de profundidade.

No interior da célula de pressão, o metano reagiu e formou etano, propano, butano, hidrogênio molecular e grafite. Os cientistas então submeteram o etano às mesmas condições e o resultado foi a formação de metano. Ou seja, as reações são reversíveis.

Essas reações fornecem evidências de que os hidrocarbonetos pesados podem existir nas camadas mais profundas da Terra, muito abaixo dos limites onde seria razoável supor a existência de matéria orgânica soterrada.

Reações reversíveis

Outro resultado importante da pesquisa é que a reversibilidade das reações implica que a síntese de hidrocarbonetos saturados é termodinamicamente controlada e não exige a presença de matéria orgânica.

"Nós ficamos intrigados por experiências anteriores e previsões teóricas," afirma Alexander Goncharov, um dos autores da pesquisa. "Experimentos feitos há alguns anos submeteram o metano a altas pressões e temperaturas, demonstrando que hidrocarbonetos mais pesados se formam a partir do metano sob condições de temperatura e pressão muito similares. Entretanto, as moléculas não puderam ser identificadas e era provável que houvesse uma distribuição."

"Nós superamos esse problema com nossa técnica aprimorada de aquecimento a laser, que nos permitiu aquecer um volume maior de maneira mais uniforme. Com isso, descobrimos que o metano pode ser produzido a partir do etano", declarou Goncharov.

Hidrocarbonetos gerados no interior da Terra

"A ideia de que os hidrocarbonetos gerados no manto migram para a crosta terrestre e contribuem para a formação dos reservatórios de óleo e gás foi levantada na Rússia e na Ucrânia muito anos atrás. A síntese e a estabilidade dos compostos estudados aqui, assim como a presença dos hidrocarbonetos pesados ao longo de todas as condições no interior do manto da Terra agora precisarão ser exploradas," explica outro autor da pesquisa, professor Anton Kolesnikov.

"Além disso, a extensão na qual esse carbono 'reduzido' sobrevive à migração até a crosta, sem se oxidar em CO2, precisa ser descoberta. Essas e outras questões relacionadas demonstram a necessidade de um programa de novos estudos teóricos e experimentais para estudar o destino do carbono nas profundezas da Terra," conclui o pesquisador.

quinta-feira, 24 de setembro de 2009

Físicos Criam Dispositivo Capaz de Armazenar a Luz



Estou de volta com uma notícia que pode soar meio estranho para alguns, pesquisadores da Universidade de Mainz, na Alemanha, construiram o que parece ser uma "armadilha para a luz"! Isso mesmo, a luz poderá ser armazenada! Imagine como seria prender a luz, talvez dê até para mostrar para os amigos xD "Olha eu tenho uma luz e você não tem!". Seria como domesticar a luz ou algo assim, colecionar, criar, alimentar, levar para passear...bem, não é por ai, mas bem que poderia ser hehe. Bem, sem mais delongas, ai vai a notícia:

Pesquisadores da Universidade de Mainz, na Alemanha, realizaram um sonho longamente perseguido por físicos de todo o mundo: eles construíram uma armadilha de luz, um dispositivo que permite que a luz seja armazenada por longos períodos de tempo.

Físicos criam dispositivo capaz de armazenar a luz







Esquema da garrafa ressonadora. A luz segue uma espiral ao longo do eixo da garrafa e oscila para trás e para a frente ao longo dos dois estreitamentos da fibra óptica. A linha vermelha indica a rota que a luz segue.[Imagem: Institute of Physics, Mainz University]

O dispositivo é inacreditavelmente simples e feito a partir de uma única fibra óptica, o que abre caminho para seu uso em um sem-número de aplicações, de dispositivos quânticos inovadores até as telecomunicações e os equipamentos eletrônicos portáteis.

Interface quântica entre luz e matéria

"Nós queremos usar esse microrressonador multifuncional para acoplar minúsculos campos de luz, consistindo de fótons individuais, com átomos individuais," explica o professor Arno Rauschenbeutel, coordenador da pesquisa.

Se o professor Arno e sua equipe puderem dar esse passo adicional, eles estarão criando um interface quântica entre a luz e matéria, um passo essencial para a viabilização da comunicação e da criptografia quânticas, além da realização do tão sonhado computador quântico.

Como armazenar a luz

Einstein demonstrou que a luz pode ser vista como uma partícula, formada por unidades discretas, chamadas fótons. Mas será que isso implica que ela poderia ser armazenada, na forma de "bolinhas de luz"?

Certamente que não. Simplesmente porque, no mundo quântico, onde se pode tratar a luz como uma partícula, as coisas se comportam de forma bem mais complicada, e partículas nem sempre são partículas, elas se transformam em ondas e ondas se comportam como partículas, enfim, nada é como no mundo macroscópico e a palavra estabilidade assume outros significados quando se trata de fenômenos quânticos.

Assim, se você estiver mesmo interessado em fabricar um "pote" para armazenar a luz, terá que lidar com ela da forma como a percebemos, como uma onda.

Esfera espelhada

Uma primeira solução poderia ser construir uma esfera totalmente espelhada, com um único furo microscópico por onde a luz pudesse ser injetada em seu interior. Se o espelho for perfeito, a luz que entrar pelo furo ficará refletindo de um lado para o outro indefinidamente. A única perda seria dos fótons que batessem exatamente na porta de entrada.

Mas não existem espelhos perfeitos. Os melhores deles, os mais perfeitos espelhos que se consegue fabricar hoje, perdem vários por cento da luz a cada reflexão. Como a luz é muito rápida - em apenas um segundo, ela dá sete voltas ao redor da Terra - ela vai refletir tantas vezes que será absorvida pelo espelho, gerando calor, antes mesmo que consigamos medir o quanto ainda resta dela lá dentro.

Microrressonadores

As coisas começam a melhorar um pouco quando tentamos construir nosso dispositivo armazenador de luz em escala microscópica. Quando construímos paredes reflexivas e conseguimos inserir a luz de forma controlada no interior do nosso dispositivo, temos o que se chama um microrressonador.

Só para antecipar um pouco as coisas, aqui saímos do nível teórico. Já existem microrressonadores de uso prático, sendo usados, por exemplo, nos diodos laser, que revolucionaram as telecomunicações e o armazenamento óptico de informações - lembre-se dos CDs e dos DVDs - ao longo dos últimos anos.

De volta aos espelhos

Mas então, pode-se perguntar, em nível microscópico, os espelhos são melhores? Não, mas a questão é que os microrressonadores não têm a intenção de armazenar a luz por longos períodos, como a nossa proposta original ao construir um pote de luz. Para eles, basta que a luz fique confinada por alguns milionésimos de segundo.

Lembre-se da velocidade da luz. Como ela é muito rápida, o número de reflexões por segundo no interior dos microrressonadores atinge alguns trilhões por segundo. Para guardarmos a luz por alguns milionésimos de segundo, cada 1 milhão de reflexões que ocorrer nesse período não poderá perder mais do que 1 milionésimo da energia da luz.

Isso não seria uma solução para o nosso pote de luz macroscópico, porque, como dissemos, os melhores espelhos perdem vários por cento da luz por reflexão. Fazendo os cálculos, vemos que um pote de luz macroscópico precisaria de espelhos 10 mil vezes mais eficientes do que os atuais para armazenar a luz por apenas um milionésimo de segundo.

Interação entre luz e matéria

Se já não tivéssemos dificuldades suficientes rumo ao nosso pote de luz, em escala quântica surge um outro problema. Durante o armazenamento, e em qualquer aplicação prática que se possa pensar, a nossa luz armazenada estará sempre entrando em contato com átomos.

Isto exige que a frequência da luz seja ajustada com extrema precisão para interagir com os átomos, o que significa que, além de construir um espelho perfeito, teremos que fazê-lo absolutamente puro, com um único elemento químico. E ainda assim poderemos armazenar luz de uma única frequência, ou seja, de uma única cor - a frequência da luz é o que surge para nossos olhos como cor.

Esse fenômeno pode ser melhor entendido comparando o efeito com a corda de um instrumento musical: a corda somente pode vibrar em frequências fixas determinadas pelo seu comprimento. De forma similar dá-se a interação entre cada tipo de átomo e cada frequência da luz.

Ficamos então com dois problemas: precisamos de um espelho bom o bastante e precisamos ajustar a frequência da luz armazenada em nosso pote com os átomos de que o pote será feito.

Dispositivo para armazenar luz

Esta era a situação com a qual os cientistas se defrontavam até agora.

Até que a equipe do professor Arno encontrasse, de uma só vez, a solução para os dois problemas. Eles construíram um microrressonador que combina todas propriedades que se possa querer em um pote de luz, isto é, um longo tempo de armazenamento e a possibilidade de ajuste para armazenar qualquer cor de luz; e com uma vantagem adicional: tudo contido em um dispositivo único e muito pequeno.

Então, aqui vai a receita dos cientistas alemães para construir um pote capaz de armazenar luz: pegue uma fibra óptica, aqueça-a até que ela possa ser esticada e então vá puxando as suas extremidades até que ela atinja um diâmetro de cerca de metade do diâmetro de um fio de cabelo humano. Pegue um laser e molde o centro da fibra afinada, construindo nela uma saliência, um bojo, parecido com uma bola de futebol americano.

E pronto. A luz que entrar em nosso pote de luz ficará refletindo continuamente na superfície da fibra óptica, viajando em uma rota espiral ao redor do eixo da fibra. Com isto, a luz não poderá escapar pelas extremidades da fibra, onde começa e onde acaba o nosso pote, porque o diâmetro da fibra reduz-se abaixo do seu comprimento de onda.

Garrafa ressonadora

Os pesquisadores não batizaram a sua armadilha de luz de "pote de luz". Eles a chamaram de garrafa ressonante, ou garrafa ressonadora, pela similaridade do dispositivo com a chamada garrafa magnética, na qual uma partícula se move entre os extremos de um campo magnético que é fraco no meio da garrafa e forte em suas extremidades, ficando aprisionada lá dentro.

O ajuste da garrafa ressonadora para que ela possa armazenar diferentes comprimentos de onda da luz é uma questão de puxar (ou, teoricamente, empurrar) as duas extremidades da fibra. A tensão mecânica altera o índice refrativo do cristal da fibra óptica, espichando ou encurtando o caminho da luz, o que determina qual comprimento de onda ficará preso lá dentro.

sábado, 19 de setembro de 2009

Alumínio Transparente

Estarei a partir de hoje colocando notícias sobre descobertas científicas e demonstrando minha visão crítica sobre o mundo como um todo, claro, de modo humorado e empírico.

Cientistas da Universidade de Oxford criaram uma forma transparente de alumínio bombardeando o metal com o mais poderoso raio laser do mundo. A descoberta do "alumínio transparente" -- que antes era conhecido apenas em filmes de ficção científica como Star Trek IV -- pode ter implicações para a ciência planetária e nuclear.

Reprodução
Laser
Laser "flash" usado no experimento
que do novo estado de matéria

Os cientistas de Oxford publicaram a descoberta na revista "Nature Physics". Segundo eles, o laser "derrubou" elétrons de cada átomo do alumínio sem intereferir na estrutura cristalina do metal. Isso fez com que o alumínio ficasse praticamente invisível em radiação ultravioleta extrema.

"O que criamos é um estado completamente novo da matéria, que ninguém jamais havia visto antes. O alumínio transparente é só o começo", disse o professor Justin Wark, segundo quem o estudo é relevante para "as condições internas de grande planetas". "Esperamos poder criar uma maior compreensão do que acontece quando implosões de laser criam 'estrelas em miniaturas', o que um dia pode permitir que a fusão nuclear seja armada aqui na Terra", acrescentou.


O exército americano está testando o novo material para substituir o vidro blindado em carros de combate. Veja por que:

- O ALONtm é mais resistente que o vidro blindado, e pode ser utilizado em espessuras menores (50% estimado).

- O ALONtm é mais transparente que o vidro blindado.

- O ALONtm é mais leve que o vidro blindado.

Este alumínio resiste a tiros de rifle anti-aéreo a um distância razoável (uns 150 metro).

O alumínio transparente não é um metal, e sim um oxinitrato policristalino de alumínio. É uma cerâmica transparente cristalizada sobre átomos de alumínio.